How do you integrate int (13x) / (6x^2 + 5x - 6)13x6x2+5x6 using partial fractions?

1 Answer
Jun 14, 2016

2/3ln(abs(3x-2))+3/2ln(abs(2x+3))+C23ln(|3x2|)+32ln(|2x+3|)+C

Explanation:

Note that

6x^2+5x-6=6x^2+9x-4x-66x2+5x6=6x2+9x4x6

=3x(2x+3)-2(2x+3)=3x(2x+3)2(2x+3)

=(3x-2)(2x+3)=(3x2)(2x+3)

The partial fraction decomposition can then be set up as:

(13x)/((3x-2)(2x+3))=A/(3x-2)+B/(2x+3)13x(3x2)(2x+3)=A3x2+B2x+3

Multiplying both sides by (3x-2)(2x+3)(3x2)(2x+3), we see that

13x=A(2x+3)+B(3x-2)13x=A(2x+3)+B(3x2)

Letting x=-3/2x=32:

13(-3/2)=A(2(-3/2)+3)+B(3(-3/2)-2)13(32)=A(2(32)+3)+B(3(32)2)

-39/2=A(-3+3)+B(-9/2-2)392=A(3+3)+B(922)

-39/2=B(-13/2)392=B(132)

3=B3=B

Letting x=2/3x=23:

13(2/3)=A(2(2/3)+3)+B(3(2/3)-2)13(23)=A(2(23)+3)+B(3(23)2)

26/3=A(4/3+3)+B(2-2)263=A(43+3)+B(22)

26/3=A(13/3)263=A(133)

2=A2=A

Thus,

(13x)/((3x-2)(2x+3))=2/(3x-2)+3/(2x+3)13x(3x2)(2x+3)=23x2+32x+3

So,

int(13x)/(6x^2+5x-6)dx=2int1/(3x-2)dx+3int1/(2x+3)dx13x6x2+5x6dx=213x2dx+312x+3dx

=2/3int3/(3x-2)dx+3/2int2/(2x+3)dx=2333x2dx+3222x+3dx

=2/3ln(abs(3x-2))+3/2ln(abs(2x+3))+C=23ln(|3x2|)+32ln(|2x+3|)+C