How do you integrate int (13x) / (6x^2 + 5x - 6)∫13x6x2+5x−6 using partial fractions?
1 Answer
Explanation:
Note that
6x^2+5x-6=6x^2+9x-4x-66x2+5x−6=6x2+9x−4x−6
=3x(2x+3)-2(2x+3)=3x(2x+3)−2(2x+3)
=(3x-2)(2x+3)=(3x−2)(2x+3)
The partial fraction decomposition can then be set up as:
(13x)/((3x-2)(2x+3))=A/(3x-2)+B/(2x+3)13x(3x−2)(2x+3)=A3x−2+B2x+3
Multiplying both sides by
13x=A(2x+3)+B(3x-2)13x=A(2x+3)+B(3x−2)
Letting
13(-3/2)=A(2(-3/2)+3)+B(3(-3/2)-2)13(−32)=A(2(−32)+3)+B(3(−32)−2)
-39/2=A(-3+3)+B(-9/2-2)−392=A(−3+3)+B(−92−2)
-39/2=B(-13/2)−392=B(−132)
3=B3=B
Letting
13(2/3)=A(2(2/3)+3)+B(3(2/3)-2)13(23)=A(2(23)+3)+B(3(23)−2)
26/3=A(4/3+3)+B(2-2)263=A(43+3)+B(2−2)
26/3=A(13/3)263=A(133)
2=A2=A
Thus,
(13x)/((3x-2)(2x+3))=2/(3x-2)+3/(2x+3)13x(3x−2)(2x+3)=23x−2+32x+3
So,
int(13x)/(6x^2+5x-6)dx=2int1/(3x-2)dx+3int1/(2x+3)dx∫13x6x2+5x−6dx=2∫13x−2dx+3∫12x+3dx
=2/3int3/(3x-2)dx+3/2int2/(2x+3)dx=23∫33x−2dx+32∫22x+3dx
=2/3ln(abs(3x-2))+3/2ln(abs(2x+3))+C=23ln(|3x−2|)+32ln(|2x+3|)+C