How do you integrate #int 2/(x^3-x^2)# using partial fractions?
1 Answer
Explanation:
#(Ax + B)/(x^2) + C/(x - 1) = 2/((x^2)(x - 1))#
#(Ax + B)(x- 1) + C(x^2) = 2#
#Ax^2 + Bx - Ax - B + Cx^2 = 2#
#(A + C)x^2 + (B - A)x + (-B) = 2#
We can now write a system of equations.
#{(A + C = 0), (B - A = 0), (-B = 2):}#
Solving, we obtain
Therefore, the partial fraction decomposition is:
We now decompose
Therefore, the complete partial fraction decomposition of
This can be integrated as follows:
#=-2ln|x| + 2ln|x- 1| - int(2x^-2) + C#
#=2ln|x - 1| - 2ln|x| -(-2x^-1) + C#
#=2ln|x- 1| - 2ln|x| + 2/x + C#
#=2(ln|x - 1| - ln|x| + 1/x) + C#
Hopefully this helps!