How do you integrate int (2x - 1) / [(x - 1)^3 (x - 2)] using partial fractions?

1 Answer
Jul 9, 2017

I decomposed integrand into basic fractions,

(2x-1)/((x-1)^3*(x-2))=A/(x-1)+B/(x-1)^2+C/(x-1)^3+D/(x-2)

(2x-1)=A*(x^3-4x^2+5x-2)+B*(x^2-3x+2)+C*(x-2)+D*(x^3-3x^2+3x-1)

Let x=1, -C=1 or C=-1.

Let x=2, D=3.

Differentiate both sides,

2=A*(3x^2-8x+5)+B*(2x-3)+C+D*(3x^2-6x+3)

Let x=1, -B+C=2 or -B-1=2. Hence B=-3

Differentiate both sides,

0,=A*(6x-8)+2B+D*(6x-6)

Let x=1, -2A+2B=0 or A=B=-3.

Thus,

int(2x-1)/((x-1)^3*(x-2))dx

=int-3/(x-1)dx+int-3/(x-1)^2dx++int-1/(x-1)^3dx+int3/(x-2)dx

=-3Ln(x-1)+3/(x-1)+1/2*(x-1)^(-2)+3Ln(x-2)+C

=3/(x-1)+1/2*(x-1)^(-2)+3Ln((x-2)/(x-1))+C

Explanation:

I decomposed integrand into basic fractions.