How do you integrate int 2x^2sqrt(x^3+1)dx from [1,2]?

1 Answer
Jan 25, 2017

12 - 8/9sqrt(2)

Explanation:

This is a substitution problem. Let u =x^3 + 1. Then du = 3x^2dx and dx = (du)/(3x^2).

int_1^2 2x^2sqrt(u) * (du)/(3x^2)

int_1^2 2/3sqrt(u) du

2/3int_1^2 sqrt(u)du

2/3[2/3u^(3/2)]_1^2

2/3[2/3(x^3 + 1)^(3/2)]_1^2

2/3[2/3(2^3 + 1)^(3/2) - 2/3(1^3 +1)^(3/2)]

2/3[2/3(27) - 2/3sqrt(8)]

2/3[18 - 4/3sqrt(2)]

12 - 8/9sqrt(2)

Hopefully this helps!