How do you integrate int (4x-2) /( 3(x-1)^2)4x23(x1)2 using partial fractions?

1 Answer
May 12, 2016

int(4x-2)/(3(x-1)^2)dx=4/3ln(x-1)-4/(3(x-1))+c4x23(x1)2dx=43ln(x1)43(x1)+c

Explanation:

Let us first find partial fractions of (4x-2)/(3(x-1)^2)4x23(x1)2 and for this let

(4x-2)/((x-1)^2)hArrA/(x-1)+B/(x-1)^24x2(x1)2Ax1+B(x1)2 or

(4x-2)/((x-1)^2)hArr(A(x-1)+B)/((x-1)^2)=(Ax+B-A)/((x-1)^2)4x2(x1)2A(x1)+B(x1)2=Ax+BA(x1)2

Hence A=4A=4 and B-A=-2BA=2 i.e. B=4-2=2B=42=2

Hence int(4x-2)/(3(x-1)^2)dx=1/3int[2/(x-1)+2/(x-1)^2]dx4x23(x1)2dx=13[2x1+2(x1)2]dx

= 2/3int2/(x-1)dx+2/3int2/(x-1)^2dx+k232x1dx+232(x1)2dx+k

= 4/3ln(x-1)-4/(3(x-1))+c43ln(x1)43(x1)+c