How do you integrate int (6x+5) / (x+2) ^4 using partial fractions? Calculus Techniques of Integration Integral by Partial Fractions 1 Answer Jim H Mar 30, 2016 int(6x+5)/(x+2)^4 dx = int (6/(x+2)^3-7/(x+2)^4)dx = -2/(x+2)^2+7/(3(x+2)^3) + C Explanation: (6x+5)/(x+2)^4 = A/((x+2)) + B/(x+2)^2 +C/(x+2)^3 +D/(x+2)^4 A(x+2)^3 + B(x+2)^2 +C(x+2) + D = 6x+5 Ax^3 = 0x^3 rArr A=0 Bx^2 = 0x^2 rArr B=0 Cx = 6x rArr C=6 2C+D=5 and C=6 rArr D=-7 Now evaluate int(6(x+2)^-3 - 7(x+2)^-4) dx to get -2/(x+2)^2+7/(3(x+2)^3) + C Answer link Related questions How do I find the partial fraction decomposition of (2x)/((x+3)(3x+1)) ? How do I find the partial fraction decomposition of (1)/(x^3+2x^2+x ? How do I find the partial fraction decomposition of (x^4+1)/(x^5+4x^3) ? How do I find the partial fraction decomposition of (x^4)/(x^4-1) ? How do I find the partial fraction decomposition of (t^4+t^2+1)/((t^2+1)(t^2+4)^2) ? How do I find the integral intt^2/(t+4)dt ? How do I find the integral int(x-9)/((x+5)(x-2))dx ? How do I find the integral int1/((w-4)(w+1))dw ? How do I find the integral intdx/(x^2(x-1)^2) ? How do I find the integral int(x^3+4)/(x^2+4)dx ? See all questions in Integral by Partial Fractions Impact of this question 1569 views around the world You can reuse this answer Creative Commons License