How do you integrate int e^(5x)cos3x?

1 Answer
Sep 19, 2017

You can integrate by parts twice and algebraically solve for the integral to get int\ e^{5x}cos 3x\ dx=5/34 e^{5x}cos 3x+3/34 e^{5x}sin 3x+C

Explanation:

Let I=int\ e^{5x}cos 3x\ dx. Now let u=e^{5x} and dv=cos 3x\ dx so that du=5e^{5x}\ dx and v=1/3 sin 3x.

Then I=1/3 e^{5x}sin 3x-5/3int\ e^{5x}sin 3x\ dx.

For this next integral, let u=e^{5x} and dv=sin 3x\ dx so that du=5e^{5x} and v=-1/3 cos 3x. It follows that

I=1/3 e^{5x}sin 3x-5/3(-1/3 e^{5x}cos 3x+5/3 int e^{5x}cos 3x\ dx)

=1/3 e^{5x}sin 3x+5/9e^{5x}cos 3x-25/9 I.

Therefore, 34/9 I=1/3 e^{5x}sin 3x+5/9 e^{5x}cos 3x.

Multiplying both sides by 9/34, rearranging, and tacking on a +C at the end gives

I=int\ e^{5x}cos 3x\ dx=5/34 e^{5x}cos 3x+3/34 e^{5x}sin 3x+C.