How do you integrate sqrt(1- tan^2(x)) with respect to x?
2 Answers
Use WolframAlpha for complicated integrals, like this one.
Explanation:
I used WolframAlpha to do the integral.
Explanation:
I=intsqrt(1-tan^2x)dx
Let
I=intsqrt(1-tan^2x)/sec^2x(sec^2xdx)
I=intsqrt(1-tan^2x)/(tan^2x+1)(sec^2xdx)
I=intsqrt(1-sin^2theta)/(1+sin^2theta)(costhetad theta)
I=intcos^2theta/(1+sin^2theta)d theta
Write in terms of
I=int(1/sec^2theta)/(1+tan^2theta/sec^2theta)d theta
I=int1/(sec^2theta+tan^2theta)d theta
Let
I=int1/(2tan^2theta+1)d theta
Multiply by
I=intsec^2theta/((tan^2theta+1)(2tan^2theta+1))d theta
Let
I=int1/((u^2+1)(2u^2+1))du
Omitting the process of partial fraction decomposition, this becomes:
I=2int1/(2u^2+1)du-int1/(u^2+1)du
Both of which are forms of arctangent integrals:
I=sqrt2intsqrt2/((sqrt2u)^2+1)du-int1/(u^2+1)du
I=sqrt2arctan(sqrt2u)-arctan(u)
Recall
I=sqrt2arctan(sqrt2tantheta)-arctan(tantheta)
I=sqrt2arctan(sqrt2tantheta)-theta
And from
I=sqrt2arctan((sqrt2tanx)/sqrt(1-tan^2x))-arcsin(tanx)+C