How do you integrate sqrt(1- tan^2(x)) with respect to x?

2 Answers
Dec 10, 2016

Use WolframAlpha for complicated integrals, like this one.

Explanation:

I used WolframAlpha to do the integral.

intsqrt(1 - tan^2(x))dx =

(cos(x) sqrt(1 - tan^2(x)) (sqrt(2) sin^(-1)(sqrt(2) sin(x)) - tan^(-1)((sin(x))/sqrt(cos(2 x)))))/sqrt(cos(2 x)) + C

Mar 14, 2017

sqrt2arctan((sqrt2tanx)/sqrt(1-tan^2x))-arcsin(tanx)+C

Explanation:

I=intsqrt(1-tan^2x)dx

Let sintheta=tanx so costhetad theta=sec^2xdx.

I=intsqrt(1-tan^2x)/sec^2x(sec^2xdx)

I=intsqrt(1-tan^2x)/(tan^2x+1)(sec^2xdx)

I=intsqrt(1-sin^2theta)/(1+sin^2theta)(costhetad theta)

I=intcos^2theta/(1+sin^2theta)d theta

Write in terms of tantheta and sectheta:

I=int(1/sec^2theta)/(1+tan^2theta/sec^2theta)d theta

I=int1/(sec^2theta+tan^2theta)d theta

Let sec^2theta=1+tan^2theta:

I=int1/(2tan^2theta+1)d theta

Multiply by sec^2theta/sec^2theta=sec^2theta/(tan^2theta+1):

I=intsec^2theta/((tan^2theta+1)(2tan^2theta+1))d theta

Let u=tantheta so du=sec^2thetad theta:

I=int1/((u^2+1)(2u^2+1))du

Omitting the process of partial fraction decomposition, this becomes:

I=2int1/(2u^2+1)du-int1/(u^2+1)du

Both of which are forms of arctangent integrals:

I=sqrt2intsqrt2/((sqrt2u)^2+1)du-int1/(u^2+1)du

I=sqrt2arctan(sqrt2u)-arctan(u)

Recall u=tantheta:

I=sqrt2arctan(sqrt2tantheta)-arctan(tantheta)

I=sqrt2arctan(sqrt2tantheta)-theta

And from sintheta=tanx we note that theta=arcsin(tanx) and tantheta=sintheta/sqrt(1-sin^2theta):

I=sqrt2arctan((sqrt2tanx)/sqrt(1-tan^2x))-arcsin(tanx)+C