How do you integrate int (t^2 + 8) / (t^2 - 5t + 6)t2+8t25t+6 using partial fractions?

1 Answer
May 27, 2016

=t-12ln|(t-2)|+17ln|(t-3)|+c=t12ln|(t2)|+17ln|(t3)|+c ,where c = integration constant

Explanation:

I=int (t^2 + 8) / (t^2 - 5t + 6)dt=t2+8t25t+6dt

=int ((t^2 -5t+ 6)+(5t+2)) / (t^2 - 5t + 6)dt=(t25t+6)+(5t+2)t25t+6dt

=int (t^2 -5t+ 6)/ (t^2 - 5t + 6)dt+int(5t+2) / "(t-3)(t-2)"dt=t25t+6t25t+6dt+5t+2(t-3)(t-2)dt

Now
Let axx(t-3)+bxx(t-2)=5t+2a×(t3)+b×(t2)=5t+2

for t= 3 ,
axx(3-3)+bxx(3-2)=5xx3+2=>b=17a×(33)+b×(32)=5×3+2b=17

for t= 2 ,
axx(2-3)+bxx(2-2)=5xx2+2=>a=-12a×(23)+b×(22)=5×2+2a=12

I=intdt+int(-12xx(t-3)+17xx(t-2)) / "(t-3)(t-2)"dt=dt+12×(t3)+17×(t2)(t-3)(t-2)dt

=intdt-12int(dt)/(t-2)+17int(dt)/(t-3)=dt12dtt2+17dtt3

=t-12ln|(t-2)|+17ln|(t-3)|+c=t12ln|(t2)|+17ln|(t3)|+c ,where c = integration constant