How do you integrate int(x+1)/((6x^2+4)(x-5)) using partial fractions?

1 Answer

See below.

Explanation:

1) I used basic fractions method.

Inıtıially, I decomposed integrand into basic fractions,

(x+1)/[(6x^2+4)*(x-5)]=A/(x-5)+(Bx+C)/(6x^2+4)

After expanding denominator,

A*(6x^2+4)+(Bx+C)*(x-5)=x+1

(6A+B)*x^2+(C-5B)*x+4A-5C=x+1

After equating coefficients, I found

6A+B=0, C-5B=1 and 4A-5C=1 equations.

After solving them, A=3/77, B=-18/77 and C=-13/77

Thus,

int ((x+1)dx)/[(6x^2+4)*(x-5)]

=3/77int dx/(x-5)-1/77int ((18x+13)*dx)/(6x^2+4)

=3/77*ln(x-5)-3/154int (12x*dx)/(6x^2+4)-13/77int dx/(6x^2+4)

=3/77*ln(x-5)-3/154*ln(6x^2+4)-(13sqrt(6))/924*arctan((3x)/sqrt(6))+C