How do you integrate int (x-1)/ (x^3 +x) using partial fractions?

1 Answer
Jan 5, 2017

The answer is =-ln(∣x∣)+1/2ln(x^2+1)+arctanx+C

Explanation:

Let's factorise the denominator

x^3+x=x(x^2+1)

So,

(x-1)/(x^3+x)=(x-1)/(x(x^2+1))

=A/x+(Bx+C)/(x^2+1)

=(A(x^2+1)+((Bx+C)x))/(x(x^2+1))

Therefore,

x-1=A(x^2+1)+x(Bx+C)

Let x=0, =>, -1=A#

Coefficients of x^2

0=A+B, =>, B=1

Coefficients of x

1=C

So,

(x-1)/(x^3+x)=-1/x+(x+1)/(x^2+1)

Therefore,

int((x-1)dx)/(x^3+x)=int(-1dx)/x+int((x+1)dx)/(x^2+1)

=int(-1dx)/x+int(xdx)/(x^2+1)+int(1dx)/(x^2+1)

We calculate each integral separately

-intdx/x=-ln(∣x∣)

Let u=x^2+1, =>, du=2xdx

int(xdx)/(x^2+1)=int(2du)/u=1/2lnu

=1/2ln(x^2+1)

Let x=tantheta, =>, dx=sec^2theta d theta

and x^2+1=tan^2theta + 1=sec^2theta

So,

int(1dx)/(x^2+1)=int(sec^2theta d theta)/sec^2theta=intd theta=theta

=arctanx

Putting it alltogether,

int((x-1)dx)/(x^3+x)=-ln(∣x∣)+1/2ln(x^2+1)+arctanx+C