Let's factorise the denominator
x^3+x=x(x^2+1)
So,
(x-1)/(x^3+x)=(x-1)/(x(x^2+1))
=A/x+(Bx+C)/(x^2+1)
=(A(x^2+1)+((Bx+C)x))/(x(x^2+1))
Therefore,
x-1=A(x^2+1)+x(Bx+C)
Let x=0, =>, -1=A#
Coefficients of x^2
0=A+B, =>, B=1
Coefficients of x
1=C
So,
(x-1)/(x^3+x)=-1/x+(x+1)/(x^2+1)
Therefore,
int((x-1)dx)/(x^3+x)=int(-1dx)/x+int((x+1)dx)/(x^2+1)
=int(-1dx)/x+int(xdx)/(x^2+1)+int(1dx)/(x^2+1)
We calculate each integral separately
-intdx/x=-ln(∣x∣)
Let u=x^2+1, =>, du=2xdx
int(xdx)/(x^2+1)=int(2du)/u=1/2lnu
=1/2ln(x^2+1)
Let x=tantheta, =>, dx=sec^2theta d theta
and x^2+1=tan^2theta + 1=sec^2theta
So,
int(1dx)/(x^2+1)=int(sec^2theta d theta)/sec^2theta=intd theta=theta
=arctanx
Putting it alltogether,
int((x-1)dx)/(x^3+x)=-ln(∣x∣)+1/2ln(x^2+1)+arctanx+C