How do you integrate int(x+1)/((x+5)(x+3)(x+4)) using partial fractions?

1 Answer
Jun 16, 2017

The answer is =-2ln|(x+5)|-ln|(x+3)|+3ln|(x+4)|+C

Explanation:

Let's perform the decomposition into partial fractions

(x+1)/((x+5)(x+3)(x+4))=A/(x+5)+B/(x+3)+C/(x+4)

=(A(x+3)(x+4)+B(x+5)(x+4)+C(x+5)(x+3))/((x+5)(x+3)(x+4))

The denominators are the same, we compare the numerators

(x+1)=(A(x+3)(x+4)+B(x+5)(x+4)+C(x+5)(x+3))

Let x=-5, =>,

-4=-2*-1*A, =>, A=-2

Let x=-3, =>,

-2=2*1*B, =>, B=-1

Let x=-4, =>,

-3=1*-1*C, =>, C=3

So,

(x+1)/((x+5)(x+3)(x+4))=-2/(x+5)-1/(x+3)+3/(x+4)

int((x+1)dx)/((x+5)(x+3)(x+4))=-2intdx/(x+5)-1intdx/(x+3)+3intdx/(x+4)

=-2ln|(x+5)|-ln|(x+3)|+3ln|(x+4)|+C