How do you integrate int(x+1)/((x-9)(x+8)(x-2)) using partial fractions?

1 Answer
Jul 10, 2017

The answer is =10/119ln(|x-9|)-7/170ln(|x+8|)-3/70ln(|x-2|)+C

Explanation:

Let's perform the decomposition into partial fractions

(x+1)/((x-9)(x+8)(x-2))=A/(x-9)+B/(x+8)+C/(x-2)

=(A(x-2)(x+8)+B(x-9)(x-2)+C(x-9)(x+8))/((x-9)(x+8)(x-2))

The denominator is the same, we compare the numerator.

x+1=A(x-2)(x+8)+B(x-9)(x-2)+C(x-9)(x+8)

Let x=9, =>, 10=17*7A, =>, A=10/119

Let x=-8, =>, -7=-17*-10B, =>, B=-7/170

Let x=2, =>, 3=-7*10C, =>, C=-3/70

Therefore,

(x+1)/((x-9)(x+8)(x-2))=(10/119)/(x-9)-(7/170)/(x+8)-(3/70)/(x-2)

int((x+1)dx)/((x-9)(x+8)(x-2))=int(10/119dx)/(x-9)-int(7/170dx)/(x+8)-int(3/70dx)/(x-2)

=10/119ln(|x-9|)-7/170ln(|x+8|)-3/70ln(|x-2|)+C