How do you integrate int (x^2-2x+3)/((x+3)(x-1)(x+3)) dx using partial fractions?

1 Answer

int ((x^2-2x+3)*dx)/((x+3)(x-1)(x+3))=

(9/2)/(x+3)+7/8*ln(x+3)+1/8*ln(x-1)+C

Explanation:

(x^2-2x+3)/((x+3)(x-1)(x+3))=A/(x+3)^2+B/(x+3)+C/(x-1)

Use LCD =(x+3)^2(x-1), this is the denominator

(x^2-2x+3)/((x+3)^2(x-1))=(A(x-1)+B(x+3)(x-1)+C(x+3)^2)/((x+3)^2(x-1))

(x^2-2x+3)/((x+3)^2(x-1))=(Ax-A+Bx^2+2Bx-3B+Cx^2+6Cx+9C)/((x+3)^2(x-1))

the equations are

B+C=1
A+2B+6C=-2
-A-3B+9C=3

Simultaneous solution results to

A=-9/2
B=7/8
C=1/8

(x^2-2x+3)/((x+3)(x-1)(x+3))=A/(x+3)^2+B/(x+3)+C/(x-1)

(x^2-2x+3)/((x+3)(x-1)(x+3))=(-9/2)/(x+3)^2+(7/8)/(x+3)+(1/8)/(x-1)

Let us now integrate

int ((x^2-2x+3)dx)/((x+3)(x-1)(x+3))=

int (-9/2dx)/(x+3)^2+int (7/8dx)/(x+3)+int (1/8dx)/(x-1)

int ((x^2-2x+3)*dx)/((x+3)(x-1)(x+3))=

(9/2)/(x+3)+7/8*ln(x+3)+1/8*ln(x-1)+C

God bless...I hope the explanation is useful.