How do you integrate int (x + 2)/((x^2+x+7)(x+1))x+2(x2+x+7)(x+1) using partial fractions?

1 Answer
Oct 23, 2016

int((x+2)dx)/((x^2+x+7)(x+1))=ln(x+1)/7-(1/14)ln(x^2+x+7)-(5/(7sqrt3))arctan((x+1/2)/(3sqrt3/2))+C(x+2)dx(x2+x+7)(x+1)=ln(x+1)7(114)ln(x2+x+7)(573)arctanx+12332+C

Explanation:

Let's do the partial fraction decomposition
(x+2)/((x^2+x+7)(x+1))=(Ax+B)/(x^2+x+7)+C/(x+1)x+2(x2+x+7)(x+1)=Ax+Bx2+x+7+Cx+1
=((Ax+B)(x+1)+C(x^2+x+7))/((x^2+x+7)(x+1))=(Ax+B)(x+1)+C(x2+x+7)(x2+x+7)(x+1)

So x+2=(Ax+B)(x+1)+C(x^2+x+7)x+2=(Ax+B)(x+1)+C(x2+x+7)
Let x=-1x=1 then 1=0+7C1=0+7C =>C=1/7C=17
let x=0x=0 then 2=B+7C2=B+7C 2=B+12=B+1 => B=1B=1
Coefficients of x^2x2
0=A+C0=A+C => A=-C=-1/7A=C=17
so the integral becomes

int((x+2)dx)/((x^2+x+7)(x+1))=int(((-1/7)x+1)dx)/(x^2+x+7)+int((1/7)dx)/(x+1)(x+2)dx(x2+x+7)(x+1)=((17)x+1)dxx2+x+7+(17)dxx+1

=intdx/(7(x+1))-int((x-7)dx)/(7(x^2+x+7))=dx7(x+1)(x7)dx7(x2+x+7)

intdx/(7(x+1))=ln(x+1)/7dx7(x+1)=ln(x+1)7

int((x-7)dx)/(7(x^2+x+7))=int(xdx)/(7(x^2+x+7))-int(dx)/((x^2+x+7))(x7)dx7(x2+x+7)=xdx7(x2+x+7)dx(x2+x+7)

=int((2x+1)dx)/(14(x^2+x+7))-int(15dx)/(14(x^2+x+7))=(2x+1)dx14(x2+x+7)15dx14(x2+x+7)
int((2x+1)dx)/(14(x^2+x+7))=(1/14)ln(x^2+x+7))(2x+1)dx14(x2+x+7)=(114)ln(x2+x+7))
Now remains int(15dx)/(14(x^2+x+7))=15/14intdx/(x^2+x+1/4+27/4)15dx14(x2+x+7)=1514dxx2+x+14+274
=15/14intdx/(((x+1/2)^2)+27/4)=1514dx((x+12)2)+274
=15/14intdx/((x+1/2)^2/(3sqrt3/2)^2+1=1514dx(x+12)2(332)2+1

=15/14*2/(3sqrt3)arctan((x+1/2)/(3sqrt3/2))1514233arctanx+12332

=(5/(7sqrt3))arctan((x+1/2)/(3sqrt3/2))=(573)arctanx+12332