If we expand the product x^2*(x^3+1)^3x2⋅(x3+1)3 we get
x^11+3x^8+3x^5+x^2x11+3x8+3x5+x2
hence we have that
int x^2(x^3+1)^3dx=int (x^11+3x^8+3x^5+x^2)dx=x^12/12+3*x^9/9+3*x^6/6+x^3/3=x^12/12+x^9/3+x^6/2+x^3/3+c∫x2(x3+1)3dx=∫(x11+3x8+3x5+x2)dx=x1212+3⋅x99+3⋅x66+x33=x1212+x93+x62+x33+c