How do you integrate int (x^2(x^3 + 1)^3)dx(x2(x3+1)3)dx?

1 Answer

If we expand the product x^2*(x^3+1)^3x2(x3+1)3 we get

x^11+3x^8+3x^5+x^2x11+3x8+3x5+x2

hence we have that

int x^2(x^3+1)^3dx=int (x^11+3x^8+3x^5+x^2)dx=x^12/12+3*x^9/9+3*x^6/6+x^3/3=x^12/12+x^9/3+x^6/2+x^3/3+cx2(x3+1)3dx=(x11+3x8+3x5+x2)dx=x1212+3x99+3x66+x33=x1212+x93+x62+x33+c