How do you integrate int (x^3 - 2) / (x^4 - 1)x32x41 using partial fractions?

1 Answer
Jul 12, 2017

1/4ln|((x^2+1)(x+1)^3)/(x-1)|+tan^-1(x) + C14ln∣ ∣(x2+1)(x+1)3x1∣ ∣+tan1(x)+C

Explanation:

First, let's factor x^4-1x41.

x^4-1 = (x^2-1)(x^2+1) = (x-1)(x+1)(x^2+1)x41=(x21)(x2+1)=(x1)(x+1)(x2+1)

Using partial fraction separation, we can say that:

(x^3-2)/((x-1)(x+1)(x^2+1)) = A/(x-1) + B/(x+1)+(Cx+D)/(x^2+1)x32(x1)(x+1)(x2+1)=Ax1+Bx+1+Cx+Dx2+1

x^3-2 = A(x+1)(x^2+1)+B(x-1)(x^2+1)+(Cx+D)(x+1)(x-1)x32=A(x+1)(x2+1)+B(x1)(x2+1)+(Cx+D)(x+1)(x1)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Both the AA and Cx+DCx+D terms have a (x+1)(x+1) factor, so we can let xx equal -11 and solve for BB.

(-1)^3-2 = A(0)(2)+B(-2)(2)+(-C+D)(0)(-2)(1)32=A(0)(2)+B(2)(2)+(C+D)(0)(2)

-3 = -4B3=4B

3/4 = B34=B

Now we can substitute this into the original equation.

x^3-2 = A(x+1)(x^2+1)+3/4(x-1)(x^2+1)+(Cx+D)(x+1)(x-1)x32=A(x+1)(x2+1)+34(x1)(x2+1)+(Cx+D)(x+1)(x1)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Substitute x=1x=1 to get rid of (Cx+D)(Cx+D).

1-2 = A(2)(2) + 3/4(0)(2) + (C+D)(2)(0)12=A(2)(2)+34(0)(2)+(C+D)(2)(0)

-1 = 4A1=4A

-1/4 = A14=A

Now substitute this into the original equation.

x^3-2 = -1/4(x+1)(x^2+1)+3/4(x-1)(x^2+1)+(Cx+D)(x+1)(x-1)x32=14(x+1)(x2+1)+34(x1)(x2+1)+(Cx+D)(x+1)(x1)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Plug in x=0x=0 to get rid of CC.

-2 = -1/4(1)(1)+3/4(-1)(1)+(0C+D)(1)(-1)2=14(1)(1)+34(1)(1)+(0C+D)(1)(1)

-2 = -1/4 - 3/4 - D2=1434D

-1 = -D1=D

1 = D1=D

Now substitute this into the original equation:

x^3-2 = -1/4(x+1)(x^2+1)+3/4(x-1)(x^2+1)+(Cx+1)(x+1)(x-1)x32=14(x+1)(x2+1)+34(x1)(x2+1)+(Cx+1)(x+1)(x1)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Now we can pretty much plug in any number to solve for CC. Let's do x=2x=2 since that won't make any terms zero.

2^3-2 = -1/4(3)(5)+3/4(1)(5)+(2C+1)(3)(1)232=14(3)(5)+34(1)(5)+(2C+1)(3)(1)

6 = -15/4+15/4 + (6C+3)6=154+154+(6C+3)

6 = 6C+36=6C+3

3=6C3=6C

1/2 = C12=C

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
So we have:

(x^3-2)/((x-1)(x+1)(x^2+1)) = (-1/4)/(x-1) + (3/4)/(x+1)+(1/2x+1)/(x^2+1)x32(x1)(x+1)(x2+1)=14x1+34x+1+12x+1x2+1

All that is left to do is take the integral of this function.

int[(-1/4)/(x-1) + (3/4)/(x+1)+(1/2x+1)/(x^2+1)]dx[14x1+34x+1+12x+1x2+1]dx

= int(-1/4)/(x-1)dx + int(3/4)/(x+1)dx + int(1/2x+1)/(x^2+1)dx=14x1dx+34x+1dx+12x+1x2+1dx

We can integrate the first two pretty easily, and then we can split the numerator of the last integral into two.

= -1/4ln|x-1|+3/4ln|x+1|+int(1/2x)/(x^2+1)dx + int1/(x^2+1)dx=14ln|x1|+34ln|x+1|+12xx2+1dx+1x2+1dx

Use the substitution u = (x^2+1), " "du = 2xdxu=(x2+1), du=2xdx:

= -1/4ln|x-1|+3/4ln|x+1|+int(1/4)/udu + int1/(x^2+1)dx=14ln|x1|+34ln|x+1|+14udu+1x2+1dx

= -1/4ln|x-1|+3/4ln|x+1|+1/4ln(u) + tan^-1(x)=14ln|x1|+34ln|x+1|+14ln(u)+tan1(x)

And finally simplify everything (don't forget +C+C !)

= -1/4ln|x-1|+1/4ln|(x+1)^3| + 1/4ln|x^2+1| + tan^-1(x)=14ln|x1|+14ln(x+1)3+14lnx2+1+tan1(x)

= 1/4ln|((x^2+1)(x+1)^3)/(x-1)|+tan^-1(x) + C=14ln∣ ∣(x2+1)(x+1)3x1∣ ∣+tan1(x)+C

Final Answer