Here is a way to find the Integral I=int(x+3)/{x^2(x-1)}dxI=∫x+3x2(x−1)dx,
without using partial fractions.
I=int(x+3)/{x^2(x-1)}dxI=∫x+3x2(x−1)dx,
=int{x/{x^2(x-1)}+3/{x^2(x-1)}}dx=∫{xx2(x−1)+3x2(x−1)}dx,
=int[1/{x(x-1)}+3*(x-(x-1)}/{x^2(x-1)}]dx=∫[1x(x−1)+3⋅x−(x−1)x2(x−1)]dx,
=int[1/{x(x-1)}+3{x/{x^2(x-1)}-(x-1)/{x^2(x-1)}}]dx=∫[1x(x−1)+3{xx2(x−1)−x−1x2(x−1)}]dx,
=int[1/{x(x-1)}+3/{x(x-1)}-3/x^2]dx=∫[1x(x−1)+3x(x−1)−3x2]dx,
=int4/{x(x-1)}dx-3int1/x^2dx=∫4x(x−1)dx−3∫1x2dx,
=4int{x-(x-1)}/{x(x-1)}dx--3*x^(-2+1)/(-2+1)=4∫x−(x−1)x(x−1)dx−−3⋅x−2+1−2+1,
=4int{1/(x-1)-1/x}dx+3/x=4∫{1x−1−1x}dx+3x,
=4{ln|(x-1)|-ln|x|}+3/x=4{ln|(x−1)|−ln|x|}+3x.
rArr I=4ln|(x-1)/x|+3/x+C, or, ln(1-1/x)^4+3/x+C⇒I=4ln∣∣∣x−1x∣∣∣+3x+C,or,ln(1−1x)4+3x+C.
Enjoy Maths.!