How do you integrate int (x^3-x^2)/ (x+3)^4x3x2(x+3)4 using partial fractions?

1 Answer
Jan 18, 2017

ln|x+3| +10/(x+3)-33/(2(x+3)^2)+12/(x+3)^3+cln|x+3|+10x+3332(x+3)2+12(x+3)3+c

Explanation:

Let u=x+3u=x+3, (du)/(dx)=1dudx=1.
int((u-3)^3-(u-3)^2)/u^4 du(u3)3(u3)2u4du
=int(u^3-10u^2+33u-36)/u^4du=u310u2+33u36u4du
=int u^-1-10u^-2+33u^-3-36u^-4dx=u110u2+33u336u4dx
=ln|u|+10/u-33/(2u^2)+12/u^3+c=ln|u|+10u332u2+12u3+c