Let us first convert #(x-3x^2)/((x-6)(x-2)(x-5))# into partial fractions.
#(x-3x^2)/((x-6)(x-2)(x-5))hArrA/(x-6)+B/(x-2)+C/(x-5)#
#(x-3x^2)/((x-6)(x-2)(x-5))hArr(A(x-2)(x-5)+B(x-6)(x-5)+C(x-6)(x-2))/((x-6)(x-2)(x-5))#
= #(A(x^2-7x+10)+B(x^2-11x+30)+C(x^2-8x+12))/((x-6)(x-2)(x-5))#
= #(x^2(A+B+C)-x(7A+11B+8C)+(10A+30B+12C))/((x-6)(x-2)(x-5))#
Hence #A+B+C=-3#, #7A+11B+8C=-1# and #10A+30B+12C=0#
Subtracting #7# times of first equation from second and #10# times first from third equation, we get
#4B+C=20# and #20B+C=30# which gives us #B=5/8# and #C=140/8=35/4# and putting these in #A+B+C=-3#, we get #A=-121/8#
Hence, #(x-3x^2)/((x-6)(x-2)(x-5))=-121/(8(x-6))+5/(8(x-2))+35/(4(x-5))#
and #int(x-3x^2)/((x-6)(x-2)(x-5))dx=int[-121/(8(x-6))+5/(8(x-2))+35/(4(x-5))]dx#
= #-121/8ln(x-6)+5/8ln(x-2)+35/4ln(x-5)+c#