As the degree of the numerator is #># degree of the denominator, we have to perform a long division
#color(white)(aaaa)##x^3##color(white)(aaaa)##-7x-3##color(white)(aaaa)##|##x^2-x-2#
#color(white)(aaaa)##x^3##-x^2##-2x##color(white)(aaaaaaaa)##|##x+1#
#color(white)(aaaaa)##0##+x^2##-5x-3#
#color(white)(aaaaaa)####+x^2##-x-2#
#color(white)(aaaaaaa)####+0##-4x-1#
Also,
#x^2-x-2=(x-2)(x+1)#
Therefore,
#(x^3-7x-3)/(x^2-x-2)=(x+1)+(-4x-1)/((x-2)(x+1))#
We can perform the decomposition into partial fractions
#(-4x-1)/((x-2)(x+1))=A/(x-2)+B/(x+1)#
#=(A(x+1)+B(x-2))/((x-2)(x+1))#
We compare the numerators
#-4x-1=A(x+1)+B(x-2)#
Let #x=2#, #=>#, #-9=3A#, #=>#, #A=-3#
Let #x=-1#, #=>#, #3=-3B#, #=>#, #B=-1#
So,
#(4x+1)/((x-2)(x+1))=-3/(x-2)-1/(x+1)#
Therefore,
#(x^3-7x-3)/(x^2-x-2)=(x+1)-3/(x-2)-1/(x+1)#
#int((x^3-7x-3)dx)/(x^2-x-2)=intxdx+int1dx-3intdx/(x-2)-intdx/(x+1)#
#=x^2/2+x-3ln(|x-2|)-ln(|x+1|)+C#