How do you integrate int x+cosx from [pi/3, pi/2]? Calculus Introduction to Integration Definite and indefinite integrals 3 Answers James May 4, 2018 The answer int _(pi/3)^(pi/2)x+cosx*dx=0.8193637907356557 Explanation: show below int _(pi/3)^(pi/2)x+cosx*dx=[1/2x^2+sinx]_(pi/3)^(pi/2) [pi^2/8+sin(pi/2)]-[pi^2/18+sin(pi/3)]=(5*pi^2-4*3^(5/2)+72)/72=0.8193637907356557 Answer link Andrea S. May 4, 2018 int_(pi/3)^(pi/2) (x+cosx)dx =1+(5pi^2-36sqrt3)/72 Explanation: Using the linearity of the integral: int_(pi/3)^(pi/2) (x+cosx)dx = int_(pi/3)^(pi/2)xdx + int_(pi/3)^(pi/2) cosxdx Now: int_(pi/3)^(pi/2)xdx = [x^2/2]_(pi/3)^(pi/2) = pi^2/8-pi^2/18 = (5pi^2)/72 int_(pi/3)^(pi/2) cosxdx = [sinx]_(pi/3)^(pi/2) = sin(pi/2)-sin(pi/3) = 1-sqrt3/2 Then: int_(pi/3)^(pi/2) (x+cosx)dx =1+(5pi^2-36sqrt3)/72 Answer link Jim S May 4, 2018 (5π^2)/72+1-sqrt3/2 Explanation: int_(π/3)^(π/2)(x+cosx)dx = int_(π/3)^(π/2)xdx+int_(π/3)^(π/2)cosxdx = [x^2/2]_(π/3)^(π/2) + [sinx]_(pi/3)^(π/2) = (π^2/4)/2-(π^2/9)/2+sin(π/2)-sin(π/3) = π^2/8-π^2/18+1-sqrt3/2 = (5π^2)/72+1-sqrt3/2 Answer link Related questions What is the difference between definite and indefinite integrals? What is the integral of ln(7x)? Is f(x)=x^3 the only possible antiderivative of f(x)=3x^2? If not, why not? How do you find the integral of x^2-6x+5 from the interval [0,3]? What is a double integral? What is an iterated integral? How do you evaluate the integral 1/(sqrt(49-x^2)) from 0 to 7sqrt(3/2)? How do you integrate f(x)=intsin(e^t)dt between 4 to x^2? How do you determine the indefinite integrals? How do you integrate x^2sqrt(x^(4)+5)? See all questions in Definite and indefinite integrals Impact of this question 3767 views around the world You can reuse this answer Creative Commons License