How do you integrate int x+cosx from [pi/3, pi/2]?

3 Answers
May 4, 2018

The answer int _(pi/3)^(pi/2)x+cosx*dx=0.8193637907356557

Explanation:

show below

int _(pi/3)^(pi/2)x+cosx*dx=[1/2x^2+sinx]_(pi/3)^(pi/2)

[pi^2/8+sin(pi/2)]-[pi^2/18+sin(pi/3)]=(5*pi^2-4*3^(5/2)+72)/72=0.8193637907356557

May 4, 2018

int_(pi/3)^(pi/2) (x+cosx)dx =1+(5pi^2-36sqrt3)/72

Explanation:

Using the linearity of the integral:

int_(pi/3)^(pi/2) (x+cosx)dx = int_(pi/3)^(pi/2)xdx + int_(pi/3)^(pi/2) cosxdx

Now:

int_(pi/3)^(pi/2)xdx = [x^2/2]_(pi/3)^(pi/2) = pi^2/8-pi^2/18 = (5pi^2)/72

int_(pi/3)^(pi/2) cosxdx = [sinx]_(pi/3)^(pi/2) = sin(pi/2)-sin(pi/3) = 1-sqrt3/2

Then:

int_(pi/3)^(pi/2) (x+cosx)dx =1+(5pi^2-36sqrt3)/72

May 4, 2018

(5π^2)/72+1-sqrt3/2

Explanation:

int_(π/3)^(π/2)(x+cosx)dx =

int_(π/3)^(π/2)xdx+int_(π/3)^(π/2)cosxdx =

[x^2/2]_(π/3)^(π/2) + [sinx]_(pi/3)^(π/2) =

(π^2/4)/2-(π^2/9)/2+sin(π/2)-sin(π/3) =

π^2/8-π^2/18+1-sqrt3/2 =

(5π^2)/72+1-sqrt3/2