How do you integrate int x/((x-1)(x+1) ) using partial fractions?

1 Answer
May 14, 2016

intx/((x-1)(x+1))dx=1/2ln(x-1)+1/2ln(x+1)+c

Explanation:

Let us first find partial fractions of x/((x-1)(x+1)) and for this let

x/((x-1)(x+1))hArrA/(x-1)+B/(x+1) or

x/((x-1)(x+1))hArr(A(x+1)+B(x-1))/((x-1)(x+1)) or

x/((x-1)(x+1))hArr((A+B)x+(A-B))/((x-1)(x+1)) or

i.e. A+B=1 and A-B=0 i.e. A=B=1/2

Hence intx/((x-1)(x+1))dx=int[1/(2(x-1))+1/(2(x+1)]dx

= 1/2ln(x-1)+1/2ln(x+1)+c