How do you integrate int x / [x^2 + 4x + 13] using partial fractions?

1 Answer
Aug 10, 2016

int x/(x^2+4x+13) d x=(l n(|x^2+4x+13|))/2-2/3 arc tan((x+2)/3)+C

Explanation:

int x/(x^2+4x+13) d x=?

2/2(x+2-2)=1/2(2x+4-4)

int x/(x^2+4x+13) d x=1/2 int(2x+4-4)/(x^2+4x+13) d x

int x/(x^2+4x+13) d x=1/2 [color(red)(int (2x+4)/(x^2+4x+13)d x)-4color(green)( int (d x)/(x^2+4x+13))]

" solve the integration ;"

color(red)(int (2x+4)/(x^2+4x+13)d x)

"substitute "u=x^2+4x+13" ; " d u=2x+4

color(red)(int (2x+4)/(x^2+4x+13)d x)=int (d u)/u=l n u

"undo substitution "

color(red)(int (2x+4)/(x^2+4x+13)d x)=l n(x^2+4x+13)

"now solve ;"

color(green)(-4 int (d x)/(x^2+4x+13))=-4 int (d x)/(x^2+4x+4+9)

color(green)(-4 int (d x)/(x^2+4x+13))=-4 int(d x)/((x+2)^2+3^2)

"substitute "

u=x+2" ; " d u= d x

color(green)(-4 int (d x)/(x^2+4x+13))=-4 int (d u)/(u^2+3^2)=-4/3 arc tan (u/3)

"undo substitution "

color(green)(-4 int (d x)/(x^2+4x+13))=-4/3 arc tan ((x+2)/3)

"Integration have solved"

int x/(x^2+4x+13) d x=1/2(l n(x^2+4x+13)-4/3 arc tan((x+2)/3))

int x/(x^2+4x+13) d x=(l n(|x^2+4x+13|))/2-2/3 arc tan((x+2)/3)+C