int x/(x^2+4x+13) d x=?
2/2(x+2-2)=1/2(2x+4-4)
int x/(x^2+4x+13) d x=1/2 int(2x+4-4)/(x^2+4x+13) d x
int x/(x^2+4x+13) d x=1/2 [color(red)(int (2x+4)/(x^2+4x+13)d x)-4color(green)( int (d x)/(x^2+4x+13))]
" solve the integration ;"
color(red)(int (2x+4)/(x^2+4x+13)d x)
"substitute "u=x^2+4x+13" ; " d u=2x+4
color(red)(int (2x+4)/(x^2+4x+13)d x)=int (d u)/u=l n u
"undo substitution "
color(red)(int (2x+4)/(x^2+4x+13)d x)=l n(x^2+4x+13)
"now solve ;"
color(green)(-4 int (d x)/(x^2+4x+13))=-4 int (d x)/(x^2+4x+4+9)
color(green)(-4 int (d x)/(x^2+4x+13))=-4 int(d x)/((x+2)^2+3^2)
"substitute "
u=x+2" ; " d u= d x
color(green)(-4 int (d x)/(x^2+4x+13))=-4 int (d u)/(u^2+3^2)=-4/3 arc tan (u/3)
"undo substitution "
color(green)(-4 int (d x)/(x^2+4x+13))=-4/3 arc tan ((x+2)/3)
"Integration have solved"
int x/(x^2+4x+13) d x=1/2(l n(x^2+4x+13)-4/3 arc tan((x+2)/3))
int x/(x^2+4x+13) d x=(l n(|x^2+4x+13|))/2-2/3 arc tan((x+2)/3)+C