How do you integrate int x/ (x^3-2x^2+x)xx32x2+x using partial fractions?

1 Answer
Jun 10, 2018

int x/(x^3-2x^2+x)dx = -1/(x-1)+Cxx32x2+xdx=1x1+C

Explanation:

Simplify the integrand:

x/(x^3-2x^2+x) = x/(x(x^2-2x+1)) = 1/(x^2-2x+1)xx32x2+x=xx(x22x+1)=1x22x+1

Factorize the denominator:

x/(x^3-2x^2+x) = 1/(x-1)^2xx32x2+x=1(x1)2

Then:

int x/(x^3-2x^2+x)dx = int dx/(x-1)^2 = -1/(x-1)+Cxx32x2+xdx=dx(x1)2=1x1+C