How do you integrate ln(x) / xln(x)x from 4 to infinity?

1 Answer
Jul 30, 2016

the integral does not converge.

Explanation:

for the basic integration, spot the pattern:

d/dx (ln^alpha x) = alpha ln^(alpha - 1) x * 1/xddx(lnαx)=αlnα1x1x

So

d/dx (color{red}{1/2} ln^2 x) = 1/2 * 2 ln x * 1/x = ln x * 1/xddx(12ln2x)=122lnx1x=lnx1x

So

int_4^oo \ ln(x) / x \ dx = int_4^oo \ d/dx (1/2 ln^2 x) \ dx

= lim_(t to oo) (1/2 ln^2 x)_4^t

the problem being, the integral does not converge.