int[(x^2+1)/(x^2-1)]dx∫[x2+1x2−1]dx
= int[(x^2-1+2)/(x^2-1)]dx∫[x2−1+2x2−1]dx
= int[1+2/(x^2-1)]dx∫[1+2x2−1]dx
= x+int2/(x^2-1)dxx+∫2x2−1dx
As (x^2-1)=(x+1)(x-1)(x2−1)=(x+1)(x−1), let 2/((x+1)(x-1))hArrA/(x+1)+B/(x-1)2(x+1)(x−1)⇔Ax+1+Bx−1 i.e.
2/((x+1)(x-1))hArr(A(x-1)+B(x+1))/((x+1)(x-1))2(x+1)(x−1)⇔A(x−1)+B(x+1)(x+1)(x−1) or
2/((x+1)(x-1))hArr((A+B)x-A+B)/((x+1)(x-1))2(x+1)(x−1)⇔(A+B)x−A+B(x+1)(x−1)
i.e. A+B=0A+B=0 and -A+B=2−A+B=2 and adding them we get 2B=22B=2
or B=1B=1 and A=-1A=−1. Hence
int[(x^2+1)/(x^2-1)]dx=x+int[-1/(x+1)+1/(x-1)]dx∫[x2+1x2−1]dx=x+∫[−1x+1+1x−1]dx
= x-ln(x+1)+ln(x-1)+cx−ln(x+1)+ln(x−1)+c