How do you integrate [(x^2 + 1)/(x^2 - 1)]dx[x2+1x21]dx?

1 Answer
Jun 20, 2016

int[(x^2+1)/(x^2-1)]dx=x-ln(x+1)+ln(x-1)+c[x2+1x21]dx=xln(x+1)+ln(x1)+c

Explanation:

int[(x^2+1)/(x^2-1)]dx[x2+1x21]dx

= int[(x^2-1+2)/(x^2-1)]dx[x21+2x21]dx

= int[1+2/(x^2-1)]dx[1+2x21]dx

= x+int2/(x^2-1)dxx+2x21dx

As (x^2-1)=(x+1)(x-1)(x21)=(x+1)(x1), let 2/((x+1)(x-1))hArrA/(x+1)+B/(x-1)2(x+1)(x1)Ax+1+Bx1 i.e.

2/((x+1)(x-1))hArr(A(x-1)+B(x+1))/((x+1)(x-1))2(x+1)(x1)A(x1)+B(x+1)(x+1)(x1) or

2/((x+1)(x-1))hArr((A+B)x-A+B)/((x+1)(x-1))2(x+1)(x1)(A+B)xA+B(x+1)(x1)

i.e. A+B=0A+B=0 and -A+B=2A+B=2 and adding them we get 2B=22B=2

or B=1B=1 and A=-1A=1. Hence

int[(x^2+1)/(x^2-1)]dx=x+int[-1/(x+1)+1/(x-1)]dx[x2+1x21]dx=x+[1x+1+1x1]dx

= x-ln(x+1)+ln(x-1)+cxln(x+1)+ln(x1)+c