How do you integrate (x^2+1)/(x(x^2-1))x2+1x(x21) using partial fractions?

1 Answer
Jan 25, 2017

The answer is =-ln(|x|)+ln(|x+1|)+ln(|x-1|)+C=ln(|x|)+ln(|x+1|)+ln(|x1|)+C

Explanation:

Let's factorise the denominator

x(x^2-1)=x(x+1)(x-1)x(x21)=x(x+1)(x1)

So, let's do the decomposition into partial fractions

(x^2+1)/(x(x^2-1))=(x^2+1)/(x(x+1)(x-1))x2+1x(x21)=x2+1x(x+1)(x1)

=A/x+B/(x+1)+C/(x-1)=Ax+Bx+1+Cx1

=(A(x+1)(x-1)+B(x)(x-1)+C(x)(x+1))/(x(x+1)(x-1))=A(x+1)(x1)+B(x)(x1)+C(x)(x+1)x(x+1)(x1)

The denominators are the same, so, we can equalise the numerators

x^2+1=A(x+1)(x-1)+B(x)(x-1)+C(x)(x+1)x2+1=A(x+1)(x1)+B(x)(x1)+C(x)(x+1)

Let x=0x=0, =>, 1=-A1=A, =>, A=-1A=1

Let x=-1x=1, =>, 2=2B2=2B, =>, B=1B=1

Let x=1x=1, =>, 2=2C2=2C, =>, C=1C=1

Therefore,

(x^2+1)/(x(x^2-1))=-1/x+1/(x+1)+1/(x-1)x2+1x(x21)=1x+1x+1+1x1

So, we can do the integration

int((x^2+1)dx)/(x(x^2-1))=-intdx/x+intdx/(x+1)+intdx/(x-1)(x2+1)dxx(x21)=dxx+dxx+1+dxx1

=-ln(|x|)+ln(|x+1|)+ln(|x-1|)+C=ln(|x|)+ln(|x+1|)+ln(|x1|)+C