How do you integrate (x^2+12x-5)/((x+1)^2(x-7)) using partial fractions?

1 Answer
Nov 27, 2016

The answer is =-2/(x+1)-ln∣x+1∣+2ln∣x-7∣ + C

Explanation:

Let's do the decomposition into partial fractions

(x^2+12x-5)/((x+1)^2(x-7))=A/(x+1)^2+B/(x+1)+C/(x-7)

=(A(x-7)+B(x+1)(x-7)+C(x+1)^2)/((x+1)^2(x-7))

Therefore,

x^2+12x-5=A(x-7)+B(x+1)(x-7)+C(x+1)^2

Let x=-1, =>, -16=-8A

Coefficients of x^2, 1=B+C

Let x=7, =>, 128=64C

C=2

B=1-C=1-2=-1

A=2

(x^2+12x-5)/((x+1)^2(x-7))=2/(x+1)^2-1/(x+1)+2/(x-7)

So,

int((x^2+12x-5)dx)/((x+1)^2(x-7))=int(2dx)/(x+1)^2-intdx/(x+1)+int(2dx)/(x-7)

=-2/(x+1)-ln∣x+1∣+2ln∣x-7∣ + C