How do you integrate ((x^2) / (16-x^3)^2) dx? Calculus Introduction to Integration Integrals of Rational Functions 1 Answer Sasha P. Sep 13, 2015 1/(3(16-x^3))+C Explanation: Choose t=16-x^3, then dt=-3x^2dx => x^2dx=-dt/3 intx^2/(16-x^3)^2dx=int1/t^2(-dt/3)=-1/3intt^(-2)dt= =-1/3 t^(-1)/-1+C=1/3 1/t+C=1/(3(16-x^3))+C Answer link Related questions How do you integrate (x+1)/(x^2+2x+1)? How do you integrate x/(1+x^4)? How do you integrate dx / (2sqrt(x) + 2x? What is the integration of 1/x? How do you integrate (1+x)/(1-x)? How do you integrate (2x^3-3x^2+x+1)/(-2x+1)? How do you find integral of ((secxtanx)/(secx-1))dx? How do you integrate (6x^5 -2x^4 + 3x^3 + x^2 - x-2)/x^3? How do you integrate ((4x^2-1)^2)/x^3dx ? How do you integrate (x+3) / sqrt(x) dx? See all questions in Integrals of Rational Functions Impact of this question 4350 views around the world You can reuse this answer Creative Commons License