How do you integrate (x^2-2)/((x+1)(x^2+3))x22(x+1)(x2+3) using partial fractions?

1 Answer
Oct 29, 2016

Please see the explanation.

Explanation:

Expand:

(x^2 - 2)/((x + 1)(x^2 + 3)) = A/(x + 1) + (Bx + C)/(x^2 + 3)x22(x+1)(x2+3)=Ax+1+Bx+Cx2+3

x^2 - 2 = A(x^2 + 3) + (Bx + C)(x + 1)x22=A(x2+3)+(Bx+C)(x+1)

Let x = -1 to make B and C disappear:

-1^2 - 2 = A(-1^2 + 3)122=A(12+3)

-1 = 4A1=4A

A = -1/4A=14

x^2 - 2 = -1/4(x^2 + 3) + (Bx + C)(x + 1)x22=14(x2+3)+(Bx+C)(x+1)

Let x = 0 to make B disappear:

- 2 = -1/4(3) + (C)(1)2=14(3)+(C)(1)

C = -5/4C=54

x^2 - 2 = -1/4(x^2 + 3) + (Bx -5/4)(x + 1)x22=14(x2+3)+(Bx54)(x+1)

Let x = 1:

1^2 - 2 = -1/4(1^2 + 3) + (B -5/4)(1 + 1)122=14(12+3)+(B54)(1+1)

-1 = -1 + (2B -5/2)1=1+(2B52)

B = 5/4B=54

int(x^2 - 2)/((x + 1)(x^2 + 3))dx = -1/4int1/(x + 1)dx + 5/4intx/(x^2 + 3)dx - 5/4int1/(x^2 + 3)dxx22(x+1)(x2+3)dx=141x+1dx+54xx2+3dx541x2+3dx

int(x^2 - 2)/((x + 1)(x^2 + 3))dx = -1/4ln|x + 1| + 5/4ln|x^2 + 3| - (5sqrt(3))/12tan^-1(x/sqrt(3))x22(x+1)(x2+3)dx=14ln|x+1|+54lnx2+35312tan1(x3)