How do you integrate (x^2+8)/(x^2-5x+6)x2+8x25x+6 using partial fractions?

2 Answers
Sep 2, 2017

int (x^2+8)/(x^2-5x+6) dx = x + 17 lnabs(x-3) -12ln abs(x-2)+Cx2+8x25x+6dx=x+17ln|x3|12ln|x2|+C

Explanation:

Factorize the denominator:

x^2-5x+6 = (x-2)(x-3)x25x+6=(x2)(x3)

Before performing partial fraction decomposition of the rational function, the numerator must have lower degree than the denominator, so split the function as:

(x^2+8)/(x^2-5x+6) = (x^2-5x+6+5x+2)/(x^2-5x+6) = 1+(5x+2)/(x^2-5x+6) x2+8x25x+6=x25x+6+5x+2x25x+6=1+5x+2x25x+6

Now:

(5x+2)/(x^2-5x+6) = A/(x-2)+B/(x-3)5x+2x25x+6=Ax2+Bx3

(5x+2)/(x^2-5x+6) = (A(x-3)+B(x-2))/((x-2)(x-3))5x+2x25x+6=A(x3)+B(x2)(x2)(x3)

5x+2 = Ax-3A+Bx-2B5x+2=Ax3A+Bx2B

5x+2 = (A+B)x- (3A+2B)5x+2=(A+B)x(3A+2B)

{(A+B=5),(3A+2B=-2):}

{(A=-12),(B=17):}

So:

(5x+2)/(x^2-5x+6) = 17/(x-3)-12/(x-2)

(x^2+8)/(x^2-5x+6) = 1 + 17/(x-3)-12/(x-2)

int (x^2+8)/(x^2-5x+6) dx = int dx + 17 int dx/(x-3) -12int dx/(x-2)

int (x^2+8)/(x^2-5x+6) dx = x + 17 lnabs(x-3) -12ln abs(x-2)+C

Sep 2, 2017

x+17 ln | x-3| -12 ln |x-2| +C

Explanation:

Dividing by the denominator leads to

{x^2+8}/{x^2−5x+6} = 1+{5x+2}/{x^2−5x+6}

Since x^2−5x+6 = (x-3)(x-2) we can write

{5x+2}/{x^2−5x+6} = A/{x-3}+B/{x-2}

Multiplying both sides by x^2−5x+6 leads to

5x+2 = A(x-2) + B(x-3)

Substituting x=3 and x=2 in turn leads to the result A=17, B=-12, so that

{x^2+8}/{x^2−5x+6} = 1+17/{x-3}-12/{x-2}

Integrating this leads to the quoted result quickly!