How do you integrate x^2/((x-3)(x+2)^2)?

1 Answer
Feb 13, 2017

The answer is =9/25ln(|x-3|)+16/25ln(|x+2|)+4/(5(x+2))+C

Explanation:

Let's perform the decomposition into partial fractions

x^2/((x-3)(x+2)^2)=A/(x-3)+B/(x+2)^2+C/(x+2)

=(A(x+2)^2+B(x-3)+C(x+2)(x-3))/((x-3)(x+2)^2)

The denominators are the same, we compare the numerators

x^2=A(x+2)^2+B(x-3)+C(x+2)(x-3)

Let x=3, =>, 9=25A, =>, A=9/25

Let x=-2, =>, 4=-5B, =>, B=-4/5

Coefficients of x^2,

1=A+C

C=1-A=1-9/25=16/25

Therefore,

x^2/((x-3)(x+2)^2)=(9/25)/(x-3)+(-4/5)/(x+2)^2+(16/25)/(x+2)

So,

int(x^2dx)/((x-3)(x+2)^2)=9/25intdx/(x-3)-4/5intdx/(x+2)^2+16/25intdx/(x+2)

=9/25ln(|x-3|)+16/25ln(|x+2|)+4/(5(x+2))+C