How do you integrate (x^3+2x^2-x) / x dxx3+2x2xxdx?

1 Answer
Jul 1, 2018

x^3/3+x^2-x+Cx33+x2x+C

Explanation:

At first we simplify the integrand

(x^3+2x^2-x)/x=x^3/x+2x^2/x-x/x=x^2+2x-1x3+2x2xx=x3x+2x2xxx=x2+2x1
Now we can integrate the result:

int(x^2+2x-1)dx=x^3/3+2x^2/2-x+C=x^3/3+x^2-x+C(x2+2x1)dx=x33+2x22x+C=x33+x2x+C

we have used that

int x^ndx=x^(n+1)/(n+1)+Cxndx=xn+1n+1+C if n ne -1n1