How do you integrate (x^3+4)/(x^2+4)x3+4x2+4 using partial fractions?

1 Answer
Sep 2, 2016

x^2/2-2ln(x^2+4)+2arc tan (x/2)+Cx222ln(x2+4)+2arctan(x2)+C.

Explanation:

Let I=int(x^3+4)/(x^2+4)dxI=x3+4x2+4dx

Since the degree of poly. in Nr. >> that of in DR. , we have

to first perform long division. Instead, we proceed as under :

Nr.=x^3+4Nr.=x3+4

=x^3+4x-4x+4=x(x^2+4)-4x+4=x3+4x4x+4=x(x2+4)4x+4. Hence,

(x^3+4)/(x^2+4)={x(x^2+4)-4x+4}/(x^2+4)x3+4x2+4=x(x2+4)4x+4x2+4

=(x(x^2+4))/((x^2+4))-(4x)/(x^2+4)+4/(x^2+4)=x(x2+4)(x2+4)4xx2+4+4x2+4

=x-(4x)/(x^2+4)+4/(x^2+4)=x4xx2+4+4x2+4

:. I=int[x-(4x)/(x^2+4)+4/(x^2+4)]dx

=intxdx-2int(2x)/(x^2+4)dx+4int1/(x^2+4)dx

=x^2/2-2int(d(x^2+4))/(x^2+4)+4*1/2*arc tan (x/2)

=x^2/2-2ln(x^2+4)+2arc tan (x/2)+C.

Enjoy maths.!