Let I=int(x^3+4)/(x^2+4)dxI=∫x3+4x2+4dx
Since the degree of poly. in Nr. >> that of in DR. , we have
to first perform long division. Instead, we proceed as under :
Nr.=x^3+4Nr.=x3+4
=x^3+4x-4x+4=x(x^2+4)-4x+4=x3+4x−4x+4=x(x2+4)−4x+4. Hence,
(x^3+4)/(x^2+4)={x(x^2+4)-4x+4}/(x^2+4)x3+4x2+4=x(x2+4)−4x+4x2+4
=(x(x^2+4))/((x^2+4))-(4x)/(x^2+4)+4/(x^2+4)=x(x2+4)(x2+4)−4xx2+4+4x2+4
=x-(4x)/(x^2+4)+4/(x^2+4)=x−4xx2+4+4x2+4
:. I=int[x-(4x)/(x^2+4)+4/(x^2+4)]dx
=intxdx-2int(2x)/(x^2+4)dx+4int1/(x^2+4)dx
=x^2/2-2int(d(x^2+4))/(x^2+4)+4*1/2*arc tan (x/2)
=x^2/2-2ln(x^2+4)+2arc tan (x/2)+C.
Enjoy maths.!