How do you integrate (x+4)/((x+1)(x-2)^2 ) using partial fractions?

1 Answer
Nov 22, 2017

The answer is =1/3ln(|x+1|)-1/3ln(|x-2|)-2/(x-2)+C

Explanation:

Perform the decomposition into partial fractions

(x+4)/((x+1)(x-2)^2)=A/(x+1)+B/(x-2)+C/(x-2)^2

=(A(x-2)^2+B(x+1)(x-2)+C(x+1))/(((x+1)(x-2)^2))

The denominators are the same, compare the numerators

x+4=A(x-2)^2+B(x+1)(x-2)+C(x+1)

Let x=-1, =>, 3=9A, =>, A=1/3

Let x=2, =>, 6=3C, =>, C=2

Coefficients of x^2

0=A+B, =>, B=-1/3

Therefore,

(x+4)/((x+1)(x-2)^2)=(1/3)/(x+1)+(-1/3)/(x-2)+(2)/(x-2)^2

int((x+4)dx)/((x+1)(x-2)^2)=int(1/3dx)/(x+1)+int(-1/3dx)/(x-2)+int(2dx)/(x-2)^2

=1/3ln(|x+1|)-1/3ln(|x-2|)-2/(x-2)+C