How do you integrate x/(x+1)^3?

2 Answers
Jul 13, 2018

The answer is =-1/(x+1)+1/(2(x+1)^2)+C

Explanation:

Perform this integral by substitution

Let u=x+1, =>0, du=dx

The integral is

I=int(xdx)/(x+1)^3=int((u-1)du)/u^3

=int(u^-2-u^-3)du

=-1/u+1/(2u^2)

=-1/(x+1)+1/(2(x+1)^2)+C

Jul 13, 2018

I=-(2x+1)/(2(x+1)^2)+c

Explanation:

Here,

I=intx/(x+1)^3dx

Subst . color(blue)(x+1=u=>x=u-1=>dx=du

So,

I=int(u-1)/u^3du

=int[1/u^2-1/u^3]du

=int[u^-2 -u^-3 ]du

=u^(-2+1)/(-2+1)-u^(-3+1)/(-3+1)+c

=u^-1/(-1)-u^-2/(-2)+c

=-1/u+1/(2u^2)+c

=1/(2u^2)-1/u+c

=(1-2u)/(2u^2)+c

Subst. back color(blue)(u=x+1

I=(1-2x-2)/(2(x+1)^2)+c

I=-(2x+1)/(2(x+1)^2)+c