How do you integrate x/(x+10)?

1 Answer
Apr 9, 2018

intx/(x+10)dx=x-10ln|x+10|+C

Explanation:

A simple substitution will do.

u=x+10 -> x=u-10

du=dx

Rewrite and simplify:

int(u-10)/udu=intu/udu-10int(du)/u

Integrate:

intdu-10int(du)/u=u-10ln|u|+C

Rewrite in terms of x, yielding

intx/(x+10)dx=x+10-10ln|x+10|+C

We may absorb the 10 into C.

intx/(x+10)dx=x-10ln|x+10|+C