How do you integrate x / (x² - x - 2) using partial fractions?

1 Answer
Jun 4, 2017

1/3ln|(x-2)^2(x+1)| + C

Explanation:

First, separate the fraction using partial fraction separation:

x/(x^2-x-2) = x/((x-2)(x+1))

x/((x-2)(x+1))=A/(x-2) + B/(x+1)

x = A(x+1) + B(x-2)

Set x=2 to solve for A:

2 = A(2+1) + B(2-2)

2 = 3A

2/3 = A

Set x=-1 to solve for B:

-1 = A(-1+1) + B(-1-2)

-1 = -3B

1/3 = B

Therefore, our fraction separates into:

x/(x^2-x+2) = 2/(3(x-2)) + 1/(3(x+1))

Finally, integrate:

int(2/(3(x-2))+1/(3(x+1)))dx

= 2/3ln|x-2| + 1/3ln|x+1| + C

= 1/3(2ln|x-2| + ln|x+1|) + C

= 1/3ln|(x-2)^2(x+1)| + C

Final Answer