How do you integrate x / (x² - x - 2) using partial fractions?
1 Answer
Jun 4, 2017
Explanation:
First, separate the fraction using partial fraction separation:
x/(x^2-x-2) = x/((x-2)(x+1))
x/((x-2)(x+1))=A/(x-2) + B/(x+1)
x = A(x+1) + B(x-2) Set
x=2 to solve for A:
2 = A(2+1) + B(2-2)
2 = 3A
2/3 = A Set
x=-1 to solve for B:
-1 = A(-1+1) + B(-1-2)
-1 = -3B
1/3 = B
Therefore, our fraction separates into:
x/(x^2-x+2) = 2/(3(x-2)) + 1/(3(x+1))
Finally, integrate:
int(2/(3(x-2))+1/(3(x+1)))dx
= 2/3ln|x-2| + 1/3ln|x+1| + C
= 1/3(2ln|x-2| + ln|x+1|) + C
= 1/3ln|(x-2)^2(x+1)| + C
Final Answer