How do you multiply #x^2y^2(x^2+2x+1)#?

1 Answer
Sep 20, 2016

#x^4y^2+2x^3y^2+x^2y^2#

Explanation:

Remember: #x^nxxx^m = x^(n+m)#

Expand the expression and add exponents of #x# and #y# for each term. (Actually there are no terms in #y# within the bracket in this case, so we only need to add the exponents of the terms in #x#)

Thus: #x^(2+2)y^2 + 2x^(2+1)y^2 + x^2y^2#

#= x^4y^2+2x^3y^2+x^2y^2#