sin(x/2+x/2)sin(x2+x2)
=sin(x/2)cos(x/2)+cos(x/2)sin(x/2)=sin(x2)cos(x2)+cos(x2)sin(x2)
=sin(x/2){cos(x/2)+cos(x/2)}=sin(x2){cos(x2)+cos(x2)}
=sin(x/2)*2cos(x/2)=sin(x2)⋅2cos(x2)
=2sin(x/2)cos(x/2)=2sin(x2)cos(x2)
=sin(x)=sin(x)
This is because:
sin(A+B)=sin(A)cos(B)+cos(A)sin(B)sin(A+B)=sin(A)cos(B)+cos(A)sin(B)
cos(x/2+x/2)cos(x2+x2)
=cos(x/2)cos(x/2)-sin(x/2)sin(x/2)=cos(x2)cos(x2)−sin(x2)sin(x2)
=cos^2(x/2)-sin^2(x/2)=cos2(x2)−sin2(x2)
=1-sin^2(x/2)-sin^2(x/2)=1−sin2(x2)−sin2(x2)
=1-2sin^2(x/2)=1−2sin2(x2)
=cos(x)=cos(x)
This is because:
cos(A+B)=cos(A)cos(B)-sin(A)sin(B)cos(A+B)=cos(A)cos(B)−sin(A)sin(B)
Which means that:
LHSLHS
=(1-cos(x))/sin(x)=1−cos(x)sin(x)
=(1-{1-2sin^2(x/2)})/(2sin(x/2)cos(x/2))=1−{1−2sin2(x2)}2sin(x2)cos(x2)
=(1-1+2sin^2(x/2))/(2sin(x/2)cos(x/2))=1−1+2sin2(x2)2sin(x2)cos(x2)
=(2sin^2(x/2))/(2sin(x/2)cos(x/2))=2sin2(x2)2sin(x2)cos(x2)
=(2sin(x/2)*sin(x/2))/(2sin(x/2)cos(x/2))=2sin(x2)⋅sin(x2)2sin(x2)cos(x2)
=(sin(x/2))/(cos(x/2))=sin(x2)cos(x2)
=tan(x/2)=tan(x2)
=RHS=RHS