How do you prove [1 - cos(x)]/[sin(x)] = tan(x/2)1cos(x)sin(x)=tan(x2)?

2 Answers
Oct 1, 2016

Please see below.

Explanation:

As cosx=1-2sin^2(x/2)cosx=12sin2(x2) and sinx=2sin(x/2)cos(x/2)sinx=2sin(x2)cos(x2)

Hence (1-cosx)/sinx1cosxsinx

= (1-(1-2sin^2(x/2)))/(2sin(x/2)cos(x/2))1(12sin2(x2))2sin(x2)cos(x2)

= (1-1+2sin^2(x/2))/(2sin(x/2)cos(x/2))11+2sin2(x2)2sin(x2)cos(x2)

= (2sin^2(x/2))/(2sin(x/2)cos(x/2))2sin2(x2)2sin(x2)cos(x2)

= (2sin(x/2)sin(x/2))/(2sin(x/2)cos(x/2))2sin(x2)sin(x2)2sin(x2)cos(x2)

= sin(x/2)/cos(x/2)sin(x2)cos(x2)

= tan(x/2)tan(x2)

Oct 1, 2016

Please follow the instructions below:

Explanation:

sin(x/2+x/2)sin(x2+x2)

=sin(x/2)cos(x/2)+cos(x/2)sin(x/2)=sin(x2)cos(x2)+cos(x2)sin(x2)

=sin(x/2){cos(x/2)+cos(x/2)}=sin(x2){cos(x2)+cos(x2)}

=sin(x/2)*2cos(x/2)=sin(x2)2cos(x2)

=2sin(x/2)cos(x/2)=2sin(x2)cos(x2)

=sin(x)=sin(x)

This is because:

sin(A+B)=sin(A)cos(B)+cos(A)sin(B)sin(A+B)=sin(A)cos(B)+cos(A)sin(B)

cos(x/2+x/2)cos(x2+x2)

=cos(x/2)cos(x/2)-sin(x/2)sin(x/2)=cos(x2)cos(x2)sin(x2)sin(x2)

=cos^2(x/2)-sin^2(x/2)=cos2(x2)sin2(x2)

=1-sin^2(x/2)-sin^2(x/2)=1sin2(x2)sin2(x2)

=1-2sin^2(x/2)=12sin2(x2)

=cos(x)=cos(x)

This is because:

cos(A+B)=cos(A)cos(B)-sin(A)sin(B)cos(A+B)=cos(A)cos(B)sin(A)sin(B)

Which means that:

LHSLHS

=(1-cos(x))/sin(x)=1cos(x)sin(x)

=(1-{1-2sin^2(x/2)})/(2sin(x/2)cos(x/2))=1{12sin2(x2)}2sin(x2)cos(x2)

=(1-1+2sin^2(x/2))/(2sin(x/2)cos(x/2))=11+2sin2(x2)2sin(x2)cos(x2)

=(2sin^2(x/2))/(2sin(x/2)cos(x/2))=2sin2(x2)2sin(x2)cos(x2)

=(2sin(x/2)*sin(x/2))/(2sin(x/2)cos(x/2))=2sin(x2)sin(x2)2sin(x2)cos(x2)

=(sin(x/2))/(cos(x/2))=sin(x2)cos(x2)

=tan(x/2)=tan(x2)

=RHS=RHS