How do you prove ((1+cosx) / sinx) + (sinx / (1 + cosx)) = 2 csc x?

1 Answer
Apr 15, 2015

LHS

=(1+cosx)/sinx + sinx/(1+cosx)

=((1+cosx)^2+sin^2x)/(sinx (1+cosx))

=(1+2cosx + cos^2x + sin^2x)/(sinx(1+cosx))

=(2+2cosx)/(sinx(1 + cosx))

=(2(1+cosx))/(sinx(1+cosx))

=2/sinx

=2cscx

=RHS

This is because:

a/b+c/d = (ad+bc)/(bd)

And also because:

cos^2x+sin^2x=1

[Source http://here.](https://useruploads.socratic.org/7acMCBSERuurNmOuVCJL_new%20quest%201.png)