How do you prove ( 1 / (secx - tanx) ) - ( 1 / (secx + tanx ) ) = 2 tan x? Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer Arunraju Naspuri Jul 4, 2015 It can be proved by sec^2x-tan^2x=1 Explanation: sec^2x-tan^2x=1 (secx+tanx)(secx-tanx)=1[sincea^2-b^2=(a+b)(a-b)] secx+tanx=1/(secx-tanx)" " color(red)((1)) secx-tanx=1/(secx+tanx)" " color(red)((2)) LHS= (1/(secx−tanx)−1/(secx+tanx)) " " color(red)((1))&color(red)((2)) substitute in the above equation LHS=(secx+tanx)-(secx-tanx) LHS=secx+tanx-secx+tanx LHS=2tanx LHS=RHS Hence proved Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove \csc \theta \times \tan \theta = \sec \theta? How do you prove (1-\cos^2 x)(1+\cot^2 x) = 1? How do you show that 2 \sin x \cos x = \sin 2x? is true for (5pi)/6? How do you prove that sec xcot x = csc x? How do you prove that cos 2x(1 + tan 2x) = 1? How do you prove that (2sinx)/[secx(cos4x-sin4x)]=tan2x? How do you verify the identity: -cotx =(sin3x+sinx)/(cos3x-cosx)? How do you prove that (tanx+cosx)/(1+sinx)=secx? How do you prove the identity (sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)? See all questions in Proving Identities Impact of this question 6114 views around the world You can reuse this answer Creative Commons License