How do you prove ( 1 / (secx - tanx) ) - ( 1 / (secx + tanx ) ) = 2 tan x?

1 Answer
Jul 4, 2015

It can be proved by sec^2x-tan^2x=1

Explanation:

sec^2x-tan^2x=1

(secx+tanx)(secx-tanx)=1[sincea^2-b^2=(a+b)(a-b)]

secx+tanx=1/(secx-tanx)" " color(red)((1))

secx-tanx=1/(secx+tanx)" " color(red)((2))

LHS= (1/(secx−tanx)−1/(secx+tanx))

" " color(red)((1))&color(red)((2)) substitute in the above equation

LHS=(secx+tanx)-(secx-tanx)

LHS=secx+tanx-secx+tanx

LHS=2tanx

LHS=RHS

Hence proved