How do you prove (1 + sin 2A) / (cos 2A) = (cos A + sin A) / (cos A - sin A)? Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer Alan P. Apr 23, 2015 (1+sin(2A))/(cos(2A)) = (1+2sin(A)cos(A))/(cos^2(A)-sin^2(A)) = (cos^2(A)+sin^2(A) +2sin(A)cos(A))/((cos(A)-sin(A)) * (cos(A)+sin(A))) = (cos(A)+sin(A))^2/((cos(A)-sin(A)) * (cos(A)+sin(A))) = (cos(A)+sin(A))/(cos(A)-sin(A)) Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove \csc \theta \times \tan \theta = \sec \theta? How do you prove (1-\cos^2 x)(1+\cot^2 x) = 1? How do you show that 2 \sin x \cos x = \sin 2x? is true for (5pi)/6? How do you prove that sec xcot x = csc x? How do you prove that cos 2x(1 + tan 2x) = 1? How do you prove that (2sinx)/[secx(cos4x-sin4x)]=tan2x? How do you verify the identity: -cotx =(sin3x+sinx)/(cos3x-cosx)? How do you prove that (tanx+cosx)/(1+sinx)=secx? How do you prove the identity (sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)? See all questions in Proving Identities Impact of this question 5283 views around the world You can reuse this answer Creative Commons License