How do you prove (1-sin^2theta)(1+cot^2theta)=cot^2theta?
3 Answers
Please see below.
Explanation:
We know that ,
Using
Explanation:
"using the "color(blue)"trigonometric identity"
•color(white)(x)cottheta=costheta/sintheta
"consider the left side"
(1-sin^2theta)(1+cos^2theta/sin^2theta)
"expand the factors"
=1+cot^2theta-sin^2theta-cos^2theta
=1+cot^2theta-(sin^2theta+cos^2theta)
=1+cot^2theta-1larrsin^2theta+cos^2theta=1
=cot^2theta=" right side "rArr" verified"
As proved below.
Explanation:
![https://in.pinterest.com/pin/359021401516045145/]()