How do you prove #(1-sin^2theta)(1+cot^2theta)=cot^2theta#?
3 Answers
Please see below.
Explanation:
We know that ,
Using
Explanation:
#"using the "color(blue)"trigonometric identity"#
#•color(white)(x)cottheta=costheta/sintheta#
#"consider the left side"#
#(1-sin^2theta)(1+cos^2theta/sin^2theta)#
#"expand the factors"#
#=1+cot^2theta-sin^2theta-cos^2theta#
#=1+cot^2theta-(sin^2theta+cos^2theta)#
#=1+cot^2theta-1larrsin^2theta+cos^2theta=1#
#=cot^2theta=" right side "rArr" verified"#
As proved below.
Explanation: