How do you prove #(1-sin^2theta)(1+cot^2theta)=cot^2theta#?

3 Answers
Aug 4, 2018

Please see below.

Explanation:

We know that ,

#(1)cos^2x+sin^2x=1#
#(2)csc^2x-cot^2x=1#
#(3)cscx=1/sinx#
#(4)cosx/sinx=cotx#

Using #(1) and (2):#

#LHS=(1-sin^2theta)(1+cot^2theta)#

#LHS=cos^2thetacsc^2thetatoApply(3)#

#LHS=cos^2theta*1/sin^2theta#

#LHS=cos^2theta/sin^2thetatoApply(4)#

#LHS=cot^2theta#

#LHS=RHS#

Aug 4, 2018

#"see explanation"#

Explanation:

#"using the "color(blue)"trigonometric identity"#

#•color(white)(x)cottheta=costheta/sintheta#

#"consider the left side"#

#(1-sin^2theta)(1+cos^2theta/sin^2theta)#

#"expand the factors"#

#=1+cot^2theta-sin^2theta-cos^2theta#

#=1+cot^2theta-(sin^2theta+cos^2theta)#

#=1+cot^2theta-1larrsin^2theta+cos^2theta=1#

#=cot^2theta=" right side "rArr" verified"#

Aug 5, 2018

As proved below.

Explanation:

https://in.pinterest.com/pin/359021401516045145/

#sin^2 theta + cos^2 theta = 1#

#1 - sin^2 theta = cos^2 theta#

#1 + cot^2 theta = csc^2 theta#

#csc theta = 1/ sin theta#

#(1 - sin^2 theta) (1 + cot^2 theta) = cos^2 theta * csc^2 theta#

#=> cos^2 theta * 1 / sin^2 theta#

#=> cos^2 theta / sin^2 theta = cot ^2 theta = R H S#