How do you prove (1+sinx)/(1-sinx)+(sinx-1)/(1+sinx)?

1 Answer
Oct 23, 2016

The expression simplifies to 4sinxsec^2x.

Explanation:

Put on a common denominator.

=((1 + sinx)(1 + sinx))/((1 -sinx)(1 + sinx)) + ((sinx - 1)(1 - sinx))/((1 + sinx)(1 - sinx))

=(1 + 2sinx + sin^2x - sin^2x + sinx + sinx - 1)/(1 - sin^2x)

Apply the identity sin^2theta + cos^2theta = 1 -> cos^2theta = 1 - sin^2theta to the numerator and simply the denominator.

=(4sinx)/cos^2x

Apply the identity 1/cosbeta = secbeta.

=4sinxsec^2x

Hopefully this helps!