How do you prove (1+tan^2x)/(1-tan^2x)=1+tan2x.tanx1+tan2x1−tan2x=1+tan2x.tanx ?
2 Answers
Check the explanation below
Explanation:
Using the Double Angle Identities
color(red)(cos^2x-sin^2x=cos2x)cos2x−sin2x=cos2x color(red)(2sinxcosx=sin2x2sinxcosx=sin2x
I hope this was helpful :)
We seek to prove the identity:
(1+tan^2x)/(1-tan^2x) -=1+tan2xtanx1+tan2x1−tan2x≡1+tan2xtanx
We can utilise the tangent double angle formula:
tan2A -= (2tanA)/(1-tan^2A) tan2A≡2tanA1−tan2A
Consider the RHS:
RHS = 1+tan2xtanx RHS=1+tan2xtanx
\ \ \ \ \ \ \ \ = 1+((2tanx)/(1-tan^2x))tanx
\ \ \ \ \ \ \ \ = 1+(2tan^2x)/(1-tan^2x)
\ \ \ \ \ \ \ \ = ((1-tan^2x)+(2tan^2x))/(1-tan^2x)
\ \ \ \ \ \ \ \ = (1+tan^2x)/(1-tan^2x)
\ \ \ \ \ \ \ \ = LHS \ \ \ QED