How do you prove (1-tantheta)/(1+tantheta)=(cottheta-1)/(cottheta+1)?

1 Answer
Oct 5, 2016

see below

Explanation:

(1-tan theta)/(1+tan theta) = (cot theta -1)/(cot theta +1)

Right Side: = (cot theta -1)/(cot theta +1)

=(1/tan theta -1)/(1/tan theta +1)

=((1-tantheta)/tan theta)/((1+tan theta)/tantheta)

=(1-tantheta)/tan theta * tan theta/(1+tan theta)

=(1-tan theta)/(1+tan theta)

=Left Side