How do you prove (1+tanx)/(1+cotx)=2?

2 Answers
May 24, 2016

This identity is false!!!

Explanation:

Simplifying the left side:

#(1 + sinx/cosx)/(1 + cosx/sinx)

((cosx + sinx)/cosx)/((sinx + cosx)/sinx)

(cosx + sinx)/cosx xx sinx/(sinx + cosx) =

sinx/cosx

tanx

Hopefully this helps!

May 24, 2016

Another way to prove this false is as follows.

Since (tanx)/(tanx) = 1 and tanxcotx = tanx*1/(tanx) = 1:

color(blue)((1+tanx)/(1+cotx))*(tanx)/(tanx)

= (tanx(1+tanx))/(tanx + tanxcotx)

= (tanxcancel((1+tanx)))/cancel(1+tanx)

= color(blue)(tanx)