How do you prove ((1+tanx)/(1-tanx)) + ((1+cotx)/(1-cotx)) = 0?

1 Answer
May 28, 2016

proved

Explanation:

LHS=((1+tanx)/(1-tanx)) + ((1+cotx)/(1-cotx))

=((1+tanx)/(1-tanx)) + ((1+cotx)/(1-cotx))*tanx/tanx

=((1+tanx)/(1-tanx)) + ((tanx+cotx*tanx)/(tanx-cotx*tanx))

=((1+tanx)/(1-tanx)) + ((tanx+1)/(tanx-1))

=((1+tanx)/(1-tanx))- ((1+tanx)/(1-tanx))=0=RHS